

Type: CT 10030

Aufsteckstromwandler

Rundleiter 85 mm 80x64mm Primärschiene 2x 100x10mm

Technische Informationen

Höchste Spannung Betriebsmittel

Nennfrequenz
Thermischer Bemessungs-Kurzzeitstrom
Bemessungs-Stoßstrom layn

Bemessungs-Stehwechselspannung

Thermischer Nenndauerstrom

Überstrom

Standard

Zubehör

(im Lieferumfang enthalten)

Sonderzubehör

Gewicht

Konformitätsbewertung

 $\begin{array}{l} U_m = 0,72 \; kv \\ 50 \; - \; 60 Hz \\ I_{th} = \; 60 \; ^* \; In \; (max. \; 100 \; kA) \\ I_{dyn} = \; 2.5 \; ^* \; Ith \end{array}$

4 kV / 1 min (andere Spannungen auf Anfrage)

l_{cth} = 1,2 x ln (1,0 ln für höhere Primärströme)

Begrenzungsfaktor FS5 bis FS15

Isolationsklasse H

IEC 61869 (DIN EN 61869 / VDE 04049, DIN VDE 0100, DIN 42600 sowie der DGUV Vorschrift 3 und der DIN EN 50274 / VDE 0600-514).

2 St Steckfüße

1 St. Primärschienenklemme

2 St. Sekundärklemmenabdeckungen (gelbe Schieber)

2 St. Schrauben M 5 x 35 mm

Schnappbefestigung für Tragschiene EN 50022-35

Cu-Primärschienen in verschiedenen Größen ca. 440 - 680 g die dunkel markierten Varianten wären lieferfähig

mit Konformitätsbewertung

lsr	KI.	PRIMÄRER BEMESSUNGSSTROM Jac														
		400	500	600	750	800	1000	1200	1250	1500	1600	2000	2500	3000	4000	А
5A	1	2,5	2,5	5	5	5	5	5	5	5	5	5	5	5	5	VA
		5	5	10	10	10	10	10	10	10	10	10	10	10	10	
							15	15	15	15	15	15	15	15	15	
											20	25	30	30	30	
	0,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	5	5	VA
			5	5	5	5	5	5	5	5	5	5	5	10	10	
					10	10	10	10	10	10	10	10	10	15	15	
						15	15	15	15	15	15	20	20	25	25	
	0,58			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	5	5	VA
				5	5	5	5	5	5	5	5	5	5	10	10	
						10	10	10	10	10	10	10	10	15	15	
										15	15	15	15	20	20	
	0,2			~			2,5	2,5	2,5	2,5	2,5	2,5	2,5	5	5	VA
							5	5	5	5	5	5	5	10	10	
										10	10	10	10	15	15	
											15	15	15	20	20	
	0,28									2,5	2,5	2,5	2,5	5	5	VA
											5	5	5	10	10	
													10			
1 A	1	2,5	2,5	5	5	5	5	5	5	5	5	5	15	10		VA
		5	5	10	10	10	10	10	10	10	10	10	10	15		
							15	15	15	15	15	15	15	20		
		j							j j		20	20	25	30		
	0,5	2,5	2,5	5	5	5	5	5	5	5	5	5	5	5		VA
			5	10	10	10	10	10	10	10	10	10	10	10		
								15	15	15	15	15	15	15		
													20	20		
	0,58			5	5	5	5	5	5	5	5	5	5	5		VA
								10	10	10	10	10	10	10		
										15	15	15	15	15		
														20		
	0,2						5	2,5	2,5	5	5	5	5	5		VA
										10	10	10	10	10		
													15	15		
	0,28									2,5	2,5	2,5	5	5		VA
											5	5	10	10		